About the database
NSB is the current implementation of the Neptune database (Lazarus, 1994; Spencer-Cervato, 1999). It holds hundreds of thousands of occurrence records for thousands of marine plankton microfossil species from hundreds of deep-sea ocean drilling sections; a taxonomic name management list; age models for all sections; and the geochronologic data used to create these age models. NSB serves several distinct groups of users including microfossil taxonomists, evolutionary (paleo)biologists, and paleoceanographers. A selection of papers that have used Neptune/NSB data is given below, and a full list of all papers using, describing or mentioning the database is given here.
NSB also provides data services to the Mikrotax community catalog of microfossils and to the Geobiodiversity Database (GBDB).
NSB is free to use. User accounts are employed to maintain database security and provide feedback on user needs, and can be obtained simply with an email to one of NSB's managers (see here). The only obligation is to cite the database properly (references here) in any publications or public presentations.
About us
NSB is currently developed and maintained by Johan Renaudie and David B. Lazarus, at the Museum für Naturkunde, Berlin.
The NSB Advisory Board is composed of:
Twenty selected papers using NSB

Lazarus, D. 1994. Neptune: a marine micropaleontology database. Mathematical Geology, 26(7):817–832.

Spencer-Cervato, C., Thierstein, H. R., Lazarus, D. B., and Beckmann, J. P. 1994. How synchronous are Neogene marine plankton events? Paleoceanography, 9:739–763.

Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O., and Falkowski, P. 2005. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America, 102(25):8927–8932.

Allen, A. P., Gillooly, J. F., Savage, V. M., and Brown, J. H. 2006. Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences of the United States of America, 103(24):9130–9135.

Liow, L. H. and Stenseth, N. C. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society B, 274(1626):2745–2752.

Muttoni, G. and Kent, D. 2007. Widespread formation of cherts during the early Eocene climatic optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 253(3-4):348–362.

Rabosky, D. L. and Sorhannus, U. 2009. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature, 247:183–187.

Cermeño, P. and Falkowski, P. G. 2009. Controls on diatom biogeography in the ocean. Science, 325:1539–1541.

Fils, D., Cervato, C., Reed, J., Diver, P., Tang, X., Bohling, G., and Greer, D. 2009. CHRONOS architecture: Experiences with an open-source services- oriented architecture for geoinformatics. Computers and Geosciences, 35(4):774–782.

Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H., Stewart, D. R. M., Wade, B. S., and Pearson, P. N. 2011. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biological Reviews, 86(4):900–927.

Hannisdal, B., Henderiks, J., and Liow, L. H. 2012. Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2. Global Change Biology, 18(12):3504–3516.

Lazarus, D., Barron, J., Renaudie, J., Diver, P., and Türke, A. 2014. Cenozoic diatom diversity and correlation to climate change. PLOS One, 9(1):1–18.

Renaudie, J. 2016. Quantifying the Cenozoic marine diatom deposition his- tory: links to the C and Si cycles. Biogeosciences, 13(21):6003–6014.

Fontorbe, G., Frings, P. J., De La Rocha, C. L., Hendry, K. R., and Conley, D. J. 2016. A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes. Earth and Planetary Science Letters, 453:67–77.

Wiese, R., Renaudie, J., and Lazarus, D. 2016. Testing the accuracy of genus-level data to predict species diversity in Cenozoic marine diatoms. Geology, 44(12).

Intxauspe-Zubiaurre, B., Payros, A., Flores, J. A., and Apellaniz, E. 2017. Changes to sea-surface characteristics during the middle Eocene (47.4 Ma) C21r-H6 event: evidence from calcareous nannofossil assemblages of the Gorrondatxe section (western Pyrenees). Newsletters of Stratigraphy, 50(3):245–267.

Fordham, B., Aze, T., Haller, C., Zehady, A. K., Pearson, P. N., Ogg, J. G., and Wade, B. S. 2018. Future-proofing the Cenozoic macroperforate planktonic foraminifera phylogeny of Aze & others (2011). PLOS One, 13(10):web.

Lewitus, E., Bittner, L., Malviya, S., Bowler, C., and Morlon, H. 2018. Clade-specific diversification dynamics of marine diatoms since the Jurassic. Nature Ecology & Evolution, 2:1715–1723.

Müller, R. D., Cannon, J., Williams, S., and Dutkiewicz, A. 2018. PyBacktrack 1.0: a tool for reconstructing paleobathymetry on oceanic and continental crust. Geochemistry, Geophysics, Geosystems, 19:1898–1909.

Kocsis, A. T., Reddin, C. J., Alroy, J., and Kiessling, W. 2019. The R package divdyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution.